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Preface

The main aim of this thesis is to determine the maximal C⋆ quotient of the
Temperley-Lieb algebra Tn(τ).

In chapter 1, we define Tn(τ) for every n ∈ N and for every non zero complex
number τ . The algebra Tn(τ) is defined as the universal C algebra generated
by 1, e1, e2, · · · en−1 satisfying the following relation:

e2
i = ei for i ∈ {1, 2, · · · , n − 1}

eiej = ejei if |i − j| ≧ 2

eiejei = τei if |i − j| = 1

We prove that Tn(τ) is a ⋆ algebra by identifying Tn(τ) with the diagram
algebra Dn(β) when τ = 1

β2 .

In chapter 2, Jones- Wenzl idempotents are defined. Wenzl’s theorem, which
states that if TL(τ) = ∪∞

k=1Tk(τ) admits a non-trivial C⋆ representation
then τ ∈ (0, 1

4 ] ∪ {1
4sec2( π

n+1) : n ≥ 2}, is proved.

In chapter 3, we obtain C⋆ representations of TL(τ) when the parameter
τ ∈ (0, 1

4 ] ∪ {1
4sec2( π

n+1) : n ≥ 2}. Jones’ basic construction for inclusion
N ⊂ M of finite dimensional C⋆ algebras together with a faithful trace
is explained. When the trace is Markov of modulus τ , we can repeat the
Jones’ basic construction and obtain a tower of finite dimensional C⋆ alge-
bras called the Jones tower and a sequence of projections eJ

n called the Jones
projections and consequently a sequence of quotients Jn(τ) for Tn(τ).

In chapter 4, we obtain the maximal C⋆ quotient of Tk(τ). If τ ≤ 1
4 , the

quotient map φ : Tk(τ) → Jk(τ) is ⋆ algebra isomorphism. When the pa-
rameter τ = 1

4sec2( π
n+1), the map φ : Tk(τ) → Jk(τ) is an isomorphism for

1 ≤ k ≤ n − 1. For k ≥ n, Let 1̃ : Tk(τ) → C be the trivial map for which
1̃(ei) = 0. Then we prove that (Jk(τ)⊕C, φ⊕ 1̃) is the maximal C∗ quotient
of Tk(τ) when k ≥ n. Much of the material in this thesis can be found in
[Jon].
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Chapter 1

The Temperley-Lieb Algebra

1.1 The Temperley-Lieb algebra Tn(τ)

We consider only C algebras. Let τ be a nonzero complex number.

Definition 1. For n ≥ 2, let Tn(τ) be the C algebra generated by 1, e1, e2 · · · en−1

subject to the following relations :

e2
i = ei for i ∈ {1, 2, · · · , n − 1}

eiej = ejei if |i − j| ≥ 2

eiejei = τei if |i − j| = 1

Tn(τ) has the following universal property. Let A be a unital C algebra. Let
f1, f2, · · · , fn−1 ∈ A be such that

f2
i = fi for i ∈ {1, 2, · · · , n − 1}

fifj = fjfi if |i − j| ≥ 2

fifjfi = τfi if |i − j| = 1

Then there exists a unique algebra homomorphism φ : Tn(τ) → A such that
φ(ei) = fi and φ(1) = 1A where 1A denotes the multiplicative identity of A.

We now proceed to prove that Tn(τ) is finite dimensional. By a word on
1, e1, e2, · · · , en−1 we mean a product ei1ei2 · · · eip . By convention empty
product denotes 1. Note that words on 1, e1, e2, · · · , en−1 span Tn(τ).

Lemma 1. Let w be a word on 1, e1, e2 · · · , en−1. Then

w = τk(ei1ei1−1 · · · ej1)(ei2ei2−1 · · · ej2) · · · (eipeip−1 · · · ejp)
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where k ∈ N ∪ {0} and

1 ≤ i1 < i2 < · · · ip ≤ n − 1

1 ≤ j1 < j2 < · · · jp ≤ n − 1

i1 ≥ j1, i2 ≥ j2, · · · , ip ≥ jp

Proof.The proof can be found in [Jon]. We prove this by induction on
n. Clearly the result is true for n = 2. Now assume that any word in
1, e1, e2, · · · , en−1 is of the required form. Let w be a word in 1, e1, e2, · · · , en.
If w does not contain en then we are done. So suppose that w contains en.

Assertion. w = τkw1enw2 where w1, w2 are words in 1, e1, e2, · · · , en−1.

w has the form v1envenv2 where v1, v2 are words in 1, e1, e2, · · · , en and
v is a word in 1, e1, e2, · · · , en−1.
If v does not contain en−1 then en commutes with v and hence w = v1venv2.
If v contains en−1 then by induction hypothesis v = τ ru1en−1u2 where u1, u2

are words in 1, e1, e2, · · · , en−2. Now

w = τ rv1u1enen−1enu2v2

w = τ r+1v1u1enu2v2

In any case w is τ l multiple of a word which has one en less. Repeating this
process proves the assertion.

Hence w = τkw1enw2 where w1, w2 are words in 1, e1, e2, · · · , en−1. By
induction hypothesis

w2 = τ lv2(en−1en−2 · · · , ejp)

where v2 is a word in 1, e1, e2, · · · , en−2. ( The product (en−1en−2 · · · ejp)
could be empty). Hence

w = τ sw1v2(enen−1 · · · ejp)

where w1v2 is a word in 1, e1, e2, · · · , en−1

Hence by induction hypothesis,

w = τk(ei1ei1−1 · · · ej1)(ei2ei2−1 · · · ej2) · · · (eipeip−1 · · · ejp)

where k ∈ N ∪ {0} and

1 ≤ i1 < i2 < · · · ip ≤ n − 1

i1 ≥ j1, i2 ≥ j2, · · · , ip ≥ jp
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Hence we have written w in the form needed with i′s increasing. Now
consider such an expression which has the least length. Then we claim that
j′s are also increasing. Let

w = τk(ei1ei1−1 · · · ej1)(ei2ei2−1 · · · ej2) · · · (eipeip−1 · · · ejp)

be such an expression. Suppose j1 ≥ j2. Then

w = τk(ei1ei1−1 · · · ej1)(ei2ei2−1 · · · ej2) · · · (eipeip−1 · · · ejp)

w = τk(ei1ei1−1 · · · ej1+1)(ei2 · · · ej1ej1+1ej1 · · · ej2) · · · (eipeip−1 · · · ejp)

w = τk+1(ei1ei1−1 · · · ej2)(ei2ei2−1 · · · ej1+2) · · · (eipeip−1 · · · ejp)

which has length decreased by one which is a contradiction. Hence j1 < j2.
Similarly jr < jr+1. This completes the proof. �

Now we consider the following combinatorial problem. Consider Z2 ⊂ R2.
Consider paths on Z2. The only allowed moves are either up or right i.e.
from (a, b) one can go to either (a + 1, b) or (a, b + 1).

Proposition 1. The number of paths from (0, 0) to (n, n) where n ∈ N
which lie in the region y ≤ x is 1

n+1

(

2n
n

)

. Let pn = 1
n+1

(

2n
n

)

. Then pn satisfy
the following recurrence

p1 = 1

pn =
n

∑

i=1

pi−1pn−i, for n ≥ 2.

For a proof,we refer to [GHJ]. �

The relevance of proposition 1 in our context is as follows:
Given (i1, i2, · · · , ip) and (j1, j2, · · · , jp) such that

1 ≤ i1 < i2 < · · · ip ≤ n−1, 1 ≤ j1 < j2 < · · · jp ≤ n−1, i1 ≥ j1, i2 ≥ j2, · · · , ip ≥ jp

one can associate the path from (0, 0) to (n, n) given by

(0, 0) → (i1, 0) → (i1, j1) → (i2, j1) → · · · (ip, jp) → (n, jp) → (n, n)

This is clearly a bijection from the set of paths from (0, 0) to (n, n) to the set
of ordered pairs ((i1, i2, · · · , ip), (j1, j2, · · · , jp)) which satisfies the following
condition.

1 ≤ i1 < i2 < · · · ip ≤ n−1, 1 ≤ j1 < j2 < · · · jp ≤ n−1, i1 ≥ j1, i2 ≥ j2, · · · , ip ≥ jp
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Hence we get an onto map from the set of paths from (0, 0) to (n, n) to

{(ei1ei1−1 · · · ej1)(ei2ei2−1 · · · ej2) · · · (eipeip−1 · · · ejp) :

1 ≤ i1 < i2 < · · · ip ≤ n − 1; 1 ≤ j1 < j2 < · · · jp ≤ n − 1; i1 ≥ j1, i2 ≥ j2, · · · , ip ≥ jp}

which spans Tn(τ) by Lemma 1. Hence we have proved the following result.

Proposition 2. The algebra Tn(τ) is finite dimensional and it’s dimension
is atmost 1

n+1

(

2n
n

)

.

1.2 Diagram algebra Dn(β)

Fix a non-zero complex number β. Let m, n be nonegative integers such
that m − n is even. By an (m, n) Kauffman diagram we mean a rectangle
in the plane with m points on the top and n points on the bottom and n+m

2
curves which connect pairs of points such that the curves do not intersect.

A (3, 5) diagram is shown below

Let a be an (m, n) diagram and b be an (n, p) diagram. Let b⊙a denote the
(m, p) diagram obtained by placing a on the top and b on the bottom and
removing the loops. Define

ba = βrb ⊙ a

where r denotes the number of loops removed.
For example,

a =

b =

ba = β

Let Hom(m, n) denote the C vector space with (m, n) Kauffman diagrams
as basis. The ‘multiplication’ that we have defined on diagrams extends to
a bilinear map
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Hom(m, n) × Hom(n, p) → Hom(m, p)

which is associative.

For a an (m, n) diagram and b a (p, q) diagram, a⊗b denote the (m+p, n+q)
diagram obtained by horizontal juxtaposition.
For example,

a =

b =

a ⊗ b =

Let 1 ∈ Hom(1, 1) denote the (1, 1) diagram shown below:

1 =

Let 1n = 1⊗ 1⊗ 1 · · · ⊗ 1, the (n, n) diagram with all strands coming verti-
cally down.

Define Dn(β) = Hom(n, n). Then Dn(β) is a unital C algebra with 1n

as the multiplicative identity. The map a → a⊗1 is an embedding of Dn(β)
into Dn+1(β). With this embedding in mind, we write Dn(β) ⊂ Dn+1(β).

Let Ei denote the following diagram in Dn(β)

i i + 1

Then we have the following relations:

E2
i = βEi for i ∈ 1, 2, · · · , n − 1

EiEj = EjEi if |i − j| ≧ 2

EiEjEi = Ei if |i − j| = 1
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Let eD
i = 1

β
Ei.

Then we have the following relations:

(eD
i )2 = (eD

i ) for i ∈ 1, 2, · · · , n − 1

eD
i eD

j = eD
j eD

i if |i − j| ≧ 2

eD
i eD

j eD
i =

1

β2
eD
i if |i − j| = 1

For 0 6= τ ∈ C, a nonzero complex number, let β be such that β2 = 1
τ
. Then

by the universal property of Tn(τ), there exists a unique unital homomor-
phism φ : Tn(τ) → Dn(β) such that φ(ei) = eD

i . We now proceed to prove
that φ is an isomorphism.

Lemma 2. The dimension of Dn(β) is 1
n+1

(

2n
n

)

.

Proof. Let pn denote the number of (n, n) Kauffman diagrams. Think of an
(n, n) Kauffman diagram as a disk with 2n points on the boundary with n
curves connecting pairs of points without any intersection. Then we have
the following recurrence relation

p0 = p1 = 1

pn =
n

∑

i=1

pi−1pn−i, for n ≥ 2.

Hence, by proposition 1, pn = 1
n+1

(

2n
n

)

. �

Lemma 3. {1, Ei : i = 1, 2, · · · , n − 1} generate the algebra Dn(β)

Proof. We prove this result by induction on n. If n = 2 the result is clear.
Let a be an (n, n) Kauffman diagram. If that a has a strand that comes
straight down then a = b⊗1⊗c with b ∈ Dr(β) and c ∈ Ds(β) with r, s < n.
Hence by induction hypothesis a can be written as a scalar multiple of E′

i s
and we are done. Now we consider two cases.

Case 1. a has a through string i.e a string which joins a top point with a bot-
tom point. Let us call a strand that comes vertically down a vertical string.
Pick the rightmost through string. Let ν(a) be the number of vertices to
the right of the rightmost through string of a(inclusive of the vertices that
the rightmost through string joins).
We prove that a can be written as a scalar multiple of a product of E′

is by
induction on ν(a). If ν(a) = 2 then the rightmost through string is ver-
tical and we are through. Assume that it slants from right to left. Then
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a = b ⊗ 1 ⊗ c ⊗ d with b ∈ Hom(l, k), c ∈ Hom(0, 2r) , d ∈ Hom(t, s) for
some non negative integers l, k, r, s, t with r > 0 .

Let ∪ ∈ Hom(2, 0) and ∩ ∈ Hom(0, 2) be the following diagrams.

Let ∪r = ∪ ⊗ ∪ ⊗ · · · ⊗ ∪ (r times). Similarly ∩r is defined. Note that
1⊗c = (1⊗∪r⊗c)(∩r⊗1). Let b̄ = 1k⊗1⊗∪r⊗c⊗1s and c̄ = b⊗∩r⊗1⊗d.
Then a = b̄c̄ where b̄ has a vertical string and ν(c̄) < ν(a). Hence by induc-
tion a can be written as a scalar multiple of a product of E′

i s. The proof is
similar when the rightmost through string slants from left to right.

Case 2. a has no through strings. By a concentric loop we mean a Kauffman
diagram which is either ∪r◦(1⊗α⊗∩r−1⊗1) where α is a (2r−2, 0) Kauffman
diagram (r ≥ 2) or (1⊗γ⊗∪2s−2⊗1)◦∩s where γ is a (0, 2s−2) Kauffman
diagram (s ≥ 2). An example of a concetric loop is given below:

If a does not have a concentric loop, then a = E1E3 · · · . Hence assume
that a has concentric loops. Then a = b ⊗ c ⊗ d where c is a concetric
loop in Hom(2k + 2, 0) (assuming c is on top ) and where b ∈ Hom(r, s)
and d ∈ Hom(p, q) for some nonegative integers p, q, r, s, k with k > 0.
Then c = ∪k+1(1 ⊗ a ⊗ ∩k) ⊗ 1). Let c̄ = 1r ⊗ 1 ⊗ a ⊗ ∩k ⊗ 1 ⊗ 1p. Let
b̄ = b ⊗ ∪k+1 ⊗ d. Then a = b̄c̄ where both b̄, c̄ has one concentric loop less
than that of a. Therefore, by induction on the number of concetric loops
that a has, it follows that a can be written as a product of diagrams which
have no concentric loop. Hence a is a product of E′

is. This completes the
proof. �

Theorem 1. Let β be a nonzero complex number. Let τ = 1
β2 . Then

the unique unital algebra homomorphism φ : Tn(τ) → Dn(β) such that
φ(ei) = eD

i is an isomorphism.
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Proof. By Lemma 3, φ is onto. By rank-nullity theorem,

rank(φ) + nullity(φ) = dim Tn(τ) ≤ 1

n + 1

(

2n

n

)

1

n + 1

(

2n

n

)

+ nullity(φ) ≤ 1

n + 1

(

2n

n

)

Hence nullity(φ) = 0. Thus φ is one-one. Therefore φ is an isomorphism. �

From now on we will identify Tn(τ) with Dn(β) when τ = 1
β2 and ei with

eD
i . Note that the natural map i : Tn(τ) → Tn+1(τ) is injective since

φ(ia) = φ(a) ⊗ 1 for a ∈ Tn(τ).

1.3 Trace and Conditional expectation on Dn(β)

Definition 2. Let N ⊂ M be unital C algebras such that 1N = 1M . A
linear map E : M → N is said to be a conditional expectation if

1. E(nm) = nE(m) and E(mn) = E(m)n ∀n ∈ N, m ∈ M

2. E(n) = n ∀n ∈ N

Now we describe a conditional expectation ǫn : Dn+1(β) → Dn(β) as follows:
Let ǫ̃n : Dn+1(β) → Dn(β) be defined by ǫ̃n(a) = (1n ⊗ ∪)(a ⊗ 1)(1n ⊗ ∩).
If a is an (n + 1, n + 1) diagram, then ǫ̃n(a) is obtained by just closing up
the last strand. Hence if a ∈ Dn(β) then ǫ̃n(a) = βa. Let ǫn(a) = 1

β
ǫ̃n(a)

for a ∈ Dn(β). Then ǫn is a conditional expectation.

Definition 3. Let M be a unital C algebra. Let ρ : M → C be linear. Then
ρ is said to be a trace if ρ(ab) = ρ(ba)∀a, b ∈ M . The functional ρ is said
to be unital if ρ(1) = 1.

Let trn : Dn(β) → C be defined by trn(a) = (ǫ1ǫ2 · · · ǫn−1)(a). Note that
trn(a) = trn+1(a) if a ∈ Dn(β). Hence we can and will denote trn by tr. If
a is a diagram, let c(a) be the number of loops one gets when one closes all
the strands. Then tr(a) = βc(a)−n

tr : Dn(β) → C is a unital trace and satisfy the following properties:

1. tr(x) = tr(ǫn(x)) ∀ x ∈ Dn+1(β).

2. enxen = ǫn−1(x)en ∀ x ∈ Dn(β).

3. tr(ei) = τ where τ = 1
β2 .

9



1.4 ⋆ structure on Dn(β)

Definition 4. Let M be a C algebra. A ⋆ structure on M is a function
⋆ : M → M(We write ⋆(a) = a⋆) such that the following holds

1. (a + b)⋆ = a⋆ + b⋆ ∀ a, b ∈ M

2. (αa)⋆ = ᾱa⋆ ∀ a ∈ M, α ∈ C

3. (ab)⋆ = b⋆a⋆ ∀ a, b ∈ M

4. (a⋆)⋆ = a ∀ a ∈ M

A ⋆ algebra is a C algebra together with a ⋆ structure.

Now we make Dn(β) a ⋆ algebra. The ⋆ structure is defined on the level of
diagrams (and then extends conjugate linearly) as follows:
For a diagram a, a⋆ denotes the diagram obtained by reflecting along the
horizontal middle line. Then E⋆

i = Ei. If β is real, then (eD
i )⋆ = eD

i . Thus
for τ > 0, Tn(τ) is a ⋆ algebra with ei selfadjoint.

10



Chapter 2

C⋆ representations of TL(τ )

In this chapter we will prove Wenzl’s result. It characterises the values of τ
for which TL(τ) admits a nontrivial C⋆ represntation.

Definition 5. Let M be a ⋆ algebra. By a C⋆ representation of M we mean
an algebra homomorphism π : M → A where A is a C⋆ algebras such that
π(a⋆) = (π(a))⋆.

By a non-trivial reprsentation of Tn(τ) we mean a C⋆ representation π
such that π(ei) 6= 0 for some i ∈ {1, 2, · · · , n − 1}.

First we define Jones-Wenzl idempotents in Tn(τ). See [Wen].

Define a sequence of polynomials recursively by

P0(λ) = 1 = P1(λ)

Pk(λ) = Pk−1(λ) − λPk−2(λ), for k ≥ 2

The basic properties of Pk(λ) are summarised in the following proposition.

Proposition 3. Let k be a non-negative integer and let m = [k
2 ]. Then

1. The polynomial Pk is of degree m. It’s leading coefficient is (−1)m if
k = 2m and (−1)m(m + 1) if k = 2m + 1.

2. The polynomial Pk has m distinct roots given by
{1

4 sec2( πj
k+1) : j = 1, 2, · · · , m}.

3. Assume k ≥ 1. Let λ ∈ R be such that 1
4 sec2( π

k+2) < λ < 1
4 sec2( π

k+1). Then
Pi(λ) > 0 for i ∈ {1, 2, · · · , k} and Pk+1(λ) < 0

Proof. For a proof, we refer to [GHJ]. �

Let TL(τ) =
⋃

n Tn(τ). Then TL(τ) is a ⋆ algebra generated by 1, e1, e2, ....
When τ > 0, ei’s are self adjoint.
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Proposition 4. Let τ be a nonzero complex number such that Pk(τ) 6= 0
for k = 1, 2, · · · , n. Define fk in TL(τ) recursively as follows.

f0 = 1 = f1

fk+1 = fk − Pk−1(τ)

Pk(τ)
fkekfk, 1 ≤ k ≤ n.

Then,

1. fk ∈ Tk(τ) for 1 ≤ k ≤ n + 1.

2. 1−fk is in the algebra generated by {e1, e2, · · · , ek−1} for 2 ≤ k ≤ n+1.

3. (ekfk)
2 = Pk(τ)

Pk−1(τ)ekfk , (fkek)
2 = Pk(τ)

Pk−1(τ)fkek for 1 ≤ k ≤ n + 1.

4. fk is an idempotent for 1 ≤ k ≤ n + 1.

5. fkei = 0 , eifk = 0 if i ≤ k − 1 where 1 ≤ k ≤ n + 1

6. tr(fk) = Pk(τ) for 1 ≤ k ≤ n + 1.

When τ > 0, fk is selfadjoint.

Proof. This is due to Wenzl and we include a proof here for completeness.
The proof is by induction on k. 1, 2 · · · , 6 are clearly true for k ≤ 2. Now
assume that 1, 2 · · · , 6 are true for 1 ≤ k ≤ l where l ≥ 2. We will show the
result is true for k = l + 1.

Since fl is in the algebra generated by 1, e1, e2, · · · , el−1 by definition it
follows that fl+1 is in the algebra generated by 1, e1, e2, · · · , el. Hence
fl+1 ∈ Tl+1(τ). Since 1−fl is in the algebra genrated by e1, e2, · · · , el−1 , by
definition, it follows that 1−fl+1 is in the algebra generated by e1, e2, · · · , el.

Now note that fl+1fl = fl+1 and flfl+1 = fl+1 since fl is an idempotent.
Since fl ∈ Tl(τ), el+1 commutes with fl. Hence we have,

el+1fl+1el+1 = el+1fl −
Pl−1(τ)

Pl(τ)
flel+1elel+1fl

=
Pl+1(τ)

Pl(τ)
el+1fl

Hence (el+1fl+1)
2 =

Pl+1(τ)
Pl(τ) el+1fl+1.

12



The proof that (fl+1el+1)
2 =

Pl+1(τ)
Pl(τ) fl+1el+1 is similar. Now

f2
l+1 = f2

l − 2
Pl−1(τ)

Pl(τ)
flelfl +

(

Pl−1(τ)
Pl(τ)

)2
flelflelfl

= f2
l − 2

Pl−1(τ)

Pl(τ)
flelfl +

(

Pl−1(τ)
Pl(τ)

)2 Pl(τ)

Pl−1(τ)
flelfl

= fl −
Pl−1(τ)

Pl(τ)
flelfl = fl+1

Hence fl+1 is an idempotent. Since fl+1ei = fl+1flei, it follows that fl+1ei =

0 if i ≤ l − 1. Now fl+1el = flel − Pl−1(τ)
Pl(τ) (flel)

2. But (flel)
2 = Pl(τ)

Pl−1(τ)flel.

Hence fl+1el = 0. Hence fl+1ei = 0 for i ≤ l. Similarly eifl+1 = 0. Now

tr(fl+1) = tr(fl) −
Pl−1(τ)

Pl(τ)
tr(flelfl)

= tr(fl) −
Pl−1(τ)

Pl(τ)
tr(ǫl(flelfl))

= tr(fl) −
Pl−1(τ)

Pl(τ)
tr(flǫl(el)fl)

= tr(fl) −
Pl−1(τ)

Pl(τ)
tr(τfl)

= Pl(τ) − τPl−1(τ) = Pl+1(τ)

If τ > 0 then Pk(τ) is real. Hence by induction it follows that f ′
ks are self-

adjoint. �

The idempotents described in the previous proposition are called Jones-
Wenzl idempotents.

Let τ be positive. The following result due to Wenzl restricts the values
of τ for which TL(τ) has a nontrivial C⋆ representation. The proof can be
found in [Wen]. We include the proof for completeness.

Theorem[Wenzl]. Let τ be a positive real number. If TL(τ) has a non-
trivial C⋆ representation, then τ ≤ 1

4 or τ = 1
4 sec2( π

n+1) for some n ≥ 2.

We begin the proof with the following lemma.

Lemma 4. Let τ be such that 1
4sec2( π

n+2) < τ < 1
4sec2( π

n+1) for some
n ∈ N, with n ≥ 2. Suppose π : TL(τ) → B(H) be a ⋆ homomorphism,
where H is a Hilbert space. Let eT

i denote the idempotents in TL(τ). Then
the Jones-Wenzl idempotents fT

k ’s are defined for k = 1, 2, · · ·n+2. Suppose
fk = π(fT

k ) for k ≤ n + 2. Then
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(1) 1 − fk = e1 ∨ e2 ∨ · · · ek−1 for k ≤ n + 2.

(2) en+1fn+1 = 0.

(3) en+1 is orthogonal to fn.

Proof. Note that Pk(τ) > 0 for k = 1, 2, · · ·n and Pn+1(τ) < 0. Hence the
Jones-Wenzl idempotents are defined for k = 1, 2, · · ·n + 2.

By proposition 4, it follows that fkei = 0 for i ≤ k − 1. Hence we have
e1 ∨ e2 ∨ · · · ∨ ek−1 ≤ 1 − fk. Since 1 − fk is in the algebra generated by
e1, e2, · · · , ek−1, it follows that 1 − fk ≤ e1 ∨ e2 ∨ · · · ek−1. This proves (1).

Observe that en+1fn+1en+1 = Pn+1(τ)
Pn(τ) en+1fn. But en+1fn+1en+1 is positive

and en+1fn is a projection. Since Pn+1(τ) < 0, it follows that en+1fn = 0
and (fn+1en+1)

⋆fn+1en+1 = 0. Hence fn+1en+1 = 0 and en+1 is orthogonal
to fn. By taking adjoints, we get en+1fn+1 = 0. This proves (2) and (3). �

Proposition 5. Let H be a Hilbert space. Suppose e1, e2, · · · is a sequence
of non-zero projections in B(H) satisfying the following relation :

e2
i =ei = e⋆

i

eiej =ejei = 0 if |i − j| ≥ 2

eiejei =τei if |i − j| = 1

Then τ ∈ (0, 1
4 ] ∪ {1

4sec2( π
n+1) : n ≥ 2}.

Proof. There exists a nontrivial C⋆ representation of TL(τ) say π which is
unital and for which π(eT

i ) = ei where eT
i denote the idempotents in TL(τ).

By taking norms on the third relation, it follows that τ ≤ 1. Suppose that
τ is not in the set given in the proposition. Then there exists n ≥ 2 such
that 1

4sec2( π
n+2) < τ < 1

4sec2( π
n+1). Then Pk(τ) > 0 for k = 1, 2, · · ·n

but Pn+1(τ) < 0. Hence, the Jones Wenzl idempotents fT
k ’s are defined for

k = 1, 2, · · ·n + 2. Let fk = π(fT
k ) for k ≤ n + 2.

From lemma 4, it follows that en+1 is orthogonal to fn. But en+1 is or-
thogonal to e1 ∨ e2 ∨ · · · en−1 which is, again by lemma 4, 1 − fn. Hence
en+1 = en+1fn + en+1(1 − fn) = 0 which is a contradiction. This completes
the proof. �

Now we will prove the previous conclusion without the orthogality assump-
tion of e′is.
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Proposition 6. Let H be a Hilbert space. Suppose e1, e2, · · · is a sequence
of non-zero projections in B(H) satisfying the following relation :

e2
i =ei = e⋆

i

eiej =ejei if |i − j| ≥ 2

eiejei =τei if |i − j| = 1

Then τ ∈ (0, 1
4 ] ∪ {1

4sec2( π
n+1) : n ≥ 2}.

Proof. Suppose that τ is not in the set described above. Then there
exists n ≥ 2 such that 1

4sec2( π
n+2) < τ < 1

4sec2( π
n+1). From lemma

4, it follows that en+1fn+1 = 0. Also eifn+1 = 0 for i ≤ n. Hence
fn+1 ≤ 1−e1∨e2∨· · ·∨en+1 = fn+2. But fn+2 ≤ fn+1. Hence fn+1 = fn+2.
Let k be the least element in {2, 3, · · · , n} for which fk+1 = fk+2. Let
gi = ek+ifk−1 for i ≥ 0. We will derive a contradiction by showing that g′is
satisfy the hypothesis of proposition 5.

Since ek+i commutes with fk−1 for i ≥ 0, it follows that gi’s are projec-
tions. For the same reason, g′is satisfy the third relation of proposition 5.
First, we show that g0 6= 0. By the choice of k, fk 6= fk+1. Hence fkekfk 6= 0.
Since fk ≤ fk−1, it follows that fk−1ek = g0 6= 0.

Now we show that gigj = 0 if |i − j| ≥ 2. We begin by showing g0g2 = 0.
Observe that since fk+1 = fk+2, we have

ek+1fk = ek+1(fk−fk+1)ek+1 = ek+1(
Pk−1(τ)

Pk(τ)
fkekfk)ek+1 = τ

Pk−1(τ)

Pk(τ)
ek+1fk.

Since Pk+1(τ) 6= 0, it follows that ek+1fk = 0. By premultiplying and
postmultiplying by ek+2, we see that ek+2fk = 0. Hence we have,

g0g2 = ekek+2fk−1

= ekek+2(fk−1 − fk)ek+2ek

= ek+2ek(fk−1 − fk)ekek+2

= ek+2ek(
Pk−2(τ)

Pk−1(τ)
fk−1ek−1fk−1)ekek+2

= τ
Pk−2(τ)

Pk−1(τ)
g0g2

Since Pk(τ) 6= 0, it follows that g0g2 = 0. Let i ≥ 2. Let us consider the par-
tial isometry w = ( 1

τ
)i−1ek+iek+i−1 · · · ek+2. Since w commutes with ek and

fk−1, wekfk−1 is a partial isometry. Note that (wekfk−1)
⋆wekfk−1 = g0g2 =

0. Thus, gig0 = wekfk−1(wekfk−1)
⋆ = 0. Hence gig0 = 0 if i ≥ 2. Let i, j be
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such that j ≥ i+2. Now let u = ( 1
τ
)i+1ek+iek+i−1 · · · ek. Then u is a partial

isometry which commutes with fk−1 and ek+j . Let v = uek+jfk−1. Then v
is a partial isometry such that v⋆v = g0gj and vv⋆ = gigj . Since v⋆v = 0, it
follows that vv⋆ = 0. Thus gigj = 0. Therefore gi ’s satisfy the assumptions
of proposition 5. Hence we have a contradiction. This completes the proof.
�

Now Wenzl’s theorem follows from proposition 6.
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Chapter 3

Existence of C⋆

representations of Tn(τ )

In this chapter we will describe C⋆ representations of Tn(τ) when the pa-
rameter τ ∈ (0, 1

4 ] ∪ {1
4sec2( π

m+1) : m ≥ 2}. First we describe the basic
construction for a pair of finite dimensional C⋆ algebras due to Jones. We
refer to [Jon] for most of the material in this chapter. But first let us recall
some basic facts about finite dimensional C⋆ algebras.

3.1 Finite dimensional C⋆ algebras

Let M be a finite dimensional C⋆ algebra. Then M is unital. Let {p1, p2, · · · , ps}
be the set of minimal central projections of M .
Let piMpi = {x ∈ M : pix = xpi = x} and µi =

√
dim piMpi.

Then M is isomorphic to Mµ1
(C)⊕· · ·⊕Mµs(C) as C⋆ algebras. The algebra

M is called a factor if it’s center is trivial. Let ~µ = (µ1, µ2, · · · , µs). The
vector ~µ is called the dimenstion vector of M .

Definition 6. Let M be a C⋆ algebra. A linear functional ρ : M → C is
said to be a trace if ρ(ab) = ρ(ba) ∀a, b ∈ M . The functional ρ is said to
be positive if ρ(x⋆x) ≥ 0 ∀x ∈ M and faithful if ρ(x⋆x) = 0 implies x = 0.
If M is unital then ρ is said to be unital if ρ(1) = 1.

Any trace on Mn(C) is just a multiple of the usual matrix trace i.e. if
ρ : Mn(C) → C is a trace then ρ((aij)) = λ

∑n
i=1 aii. If p is a minimal

projetion in Mn(C) then ρ(p) = λ. Hence ρ is determined by it’s value on
any minimal projection.

Let M be a finite dimensional C⋆ algebra. Let {p1, p2, · · · , ps} be the set of
minimal central projections of M and let ~µ be the dimension vector of M .
Suppose ρ : M → C is a trace. Suppose ei is a minimal projection in piMpi
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and let ti = ρ(ei). Let ~t =











t1
t2
...
tn











. Then ~t is calles the trace vector

associated to ρ. Then ρ is positive if and only if ti ≥ 0 ∀i. The trace ρ is
faithful if and only if ti > 0 ∀i and it is unital if and only if ~µ.~t = 1.

Let N and M be finite dimensional C⋆ algebras such that N ⊂ M . We
always assume that the inclusion is unital i.e. 1N = 1M . Let {p1, p2, · · · , ps}
and {q1, q2, · · · , qr} be the minimal central projections of M and N respec-

tively. Then qipjMqipj and qipjNqipj are factors. Define Λij =
√

dim qipjMqipj

dim qipjNqipj

if pjqi 6= 0. If pjqi = 0 then define Λij = 0. Then Λ is an r × s matrix such
that ~µ = ~ν.Λ. The matrix Λ is called the inclusion matrix for the inclusion
N ⊂ M .

Let N ⊂ M be a unital inclusion with inclusion matrix Λ. Let ρM be a
trace on M with trace vector ~t and ρN be a trace on N with trace vector ~s.
Then ρM |N= ρN if and only if Λ.~t = ~s.

The inclusion N ⊂ M can also be described by it’s Bratelli diagram.
Let N ⊂ M be a unital inclusion of finite dimensional C⋆ algebras with
inclusion matrix Λ. Let {q1, q2, · · · , qr} and {p1, p2, · · · , ps} be the minimal
central projections of N and M respectively.The Bratelli diagram for the
pair N ⊂ M is a bipartite graph with verices {q1, q2, · · · qr}

∐{p1, p2, · · · , ps}
where pj is joined to qi with Λij bonds.

Let us recall the finite dimensional version of von Neumann’s double com-
mutant theorem whose proof can be found for instance in [GHJ]. Let H be
a Hilbert space. Let B(H) denote the space of bounded linear operators on
H. For S ⊂ B(H), it’s commutant denoted by S

′

is defined as follows:

S
′

:= {x ∈ B(H) : xs = sx ∀s ∈ S}.

Note that S ⊂ S
′′

.

Theorem [von Neumann]. Let H be a finite dimensional Hilbert space.
Let M ⊂ B(H) be a ⋆ closed algebra such that M contains the identity oper-
ator. Then M

′′

= M . If M is a factor then M ⊗M
′

is isomorphic to B(H)
and Hence dimM dimM ′= (dim H)2.

We end this section with the following lemma. Let M ⊂ F be a unital inclu-
sion of finite dimensional C⋆ algebras with F as factor. Then the commutant
of M in F is denoted by CF (M).
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Lemma 5. Let M ⊂ F be a unital inclusion of finite dimensional C⋆ al-
gebras. Assume that F is a factor. Suppose q ∈ M ∪ CF (M) is a nonzero
projection. Then

(1) qFq is a factor.

(2) CqFq(qMq) = qCF (M)q.

Suppose N ⊂ M be a unital inclusion of finite dimensional C⋆ algebras with
the inclusion matrix Λ. Then the inclusion matrix for CF (M) ⊂ CF (N) is
Λt.

Proof. If F = B(H) for some finite dimensional Hilbert space then qFq =
B(qH). Hence (1) is true.

Let us first consider the case when q ∈ M . Let x ∈ M and y ∈ CF (M). Then
(qxq)(qyq) = qxyq = qyxq = (qyq)(qxq). Hence qCF (M)q ⊂ CqFq(qMq).
Now let s ∈ CqFq(qCF (M)q) be given. Then sq = qs = s. Let t ∈ CF (M).
Then st = sqqt = sqtq = qtqs = tqqs = ts. Hence s ∈ CF (CF (M)) = M .
Hence CqFq(qCF (M)q) ⊂ qMq. Hence taking commutants and using von-
Neumann’s double commutant theorem CqFq(qMq) ⊂ qCF (M)q. Hence
CqFq(qMq) = qCF (M)q. The case q ∈ CF (M) follows from von Neumann’s
double commutant theorem.

Suppose N ⊂ M be a unital inclusion of finite dimensional C⋆ algebras with
the inclusion matrix Λ. Let Γ be the inclusion matrix for CF (M) ⊂ CF (N).
Let q1, q2, · · · qr be the minimal central projections of N and p1, p2 · · · , ps

be that of M . Since the center of CF (M) and M are the same, it follows
that p′s and q′s are the minimal central projections of CF (M) and CF (N)
respectively. Suppose piqj 6= 0. Then

Γ2
ij =

dim piqjCF (N)piqj

dim piqjCF (M)piqj

=
dim CpiqjFpiqj

(piqjNpiqj)

dim CpiqjFpiqj
(piqjMpiqj)

For X = M or N , Since piqjXpiqj is a factor in piqjFpiqj , it follows, from

von Neumann’s theorem, that dim CpiqjFpiqj
(piqjXpiqj) =

dim piqjFpiqj

dim piqjXpiqj
.

Hence Γ2
ij = Λ2

ij . Hence Γ = Λt. This completes the proof. �

3.2 Basic construction

In this section, We describe the Jones’ basic construction for a unital inclu-
sion N ⊂ M of finite dimensional C⋆ algebras with a faithful unital trace.
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We refer to [Jon] for this section. But we include the proofs for completeness.

Let N ⊂ M be a unital inclusion of finite dimensional C⋆ algebras. Suppose
tr : M → C is a faithful unital positive trace. Then for x, y ∈ M , define
〈x, y〉 = tr(y⋆x). Then 〈, 〉 defines an inner product on M . We denote this
Hilbert space by L2(M, tr). Let E : M → N be the orthogonal projection.

Proposition 7. E is the unique trace preserving conditional expectation of
M onto N . That is

(1) E(axb) = aE(x)b for a, b ∈ N and x ∈ M .

(2) E(n) = n for n ∈ N .

(3) tr(E(x)) = tr(x).

Further (1), (2) and (3) determine E uniquely.

Proof. Let a, b ∈ N and x ∈ M be given. For n ∈ N , we have

〈aE(x)b, n〉 = tr(n⋆aE(x)b)

= tr(bn⋆aE(x))

= 〈E(x), a⋆nb⋆〉
= 〈x, a⋆nb⋆〉
= tr(bn⋆ax) = tr(n⋆axb)

= 〈axb, n〉 = 〈axb, E(n)〉
= 〈E(axb), n〉

Hence 〈aE(x)b, n〉 = 〈E(axb), n〉 for every n ∈ N . Thus E(axb) = aE(x)b.
This proves (1). Since E is the orthogonal projection of M onto N , (2) is
true. Let x ∈ M . Now tr(E(x)) = 〈E(x), 1〉 = 〈x, E(1)〉 = 〈x, 1〉 = tr(x).
Hence (3) is true.

Let E
′

: M → N be linear such that (1), (2) and (3) are satisfied for E
′

. Let
x ∈ M be given. Then for n ∈ N , 〈E′

(x), n〉 = tr(n⋆E
′

(x)) = tr(E
′

(n⋆x)) =
tr(n⋆x). A similar calculation with E shows that 〈E(x), n〉 = tr(n⋆x). Hence
〈E′

(x), n〉 = 〈E(x), n〉 for every n ∈ N . Hence E(x) = E
′

(x). Hence
E = E

′

. �

We denote E by eN when we think of E as an element in B(L2(M, tr)). For
x ∈ M , define πl(x)(y) = xy for y ∈ M and πr(x)(y) = yx for y ∈ M . Then
πl(x), πr(x) ∈ B(L2(M, tr)) for x ∈ M . The map πl : M → B(L2(M, tr)) is
a faithful unital * homomorphism. But πr is an anti homomorphism in the
sense that πr(x

∗) = (πr(x))∗ and πr(xy) = πr(y)πr(x).

Lemma 6. The commutant of πr(M) in B(L2(M, tr)) is πl(M).
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Proof. It is clear that πl(M) commutes with πr(M). Let T ∈ πr(M)
′

. Let
x = T (1). Now T (y) = Tπr(y)(1) = πr(y)(T (1)) = xy = πl(x)(y). Hence
T = πl(x) ∈ πl(M). This completes the proof. �

Henceforth we identify M with πl(M). Now πr(N) ⊂ πr(M). Note that
πl(M) = πr(M)

′ ⊂ πr(N)′. Hence starting with a unital inclusion N ⊂ M
together with a unital faithful positive trace on M , we obtain another unital
inclusion M ⊂ πr(N)

′

.

Definition 7. Suppose N ⊂ M be a unital inclusion of finite dimensional
C⋆ algebras. Let tr be a faithful, unital, positive trace on M . Then the inclu-
sion M ⊂ πr(N)

′

is called the basic construction for the pair (N ⊂ M, tr).

The main properties of the basic construction are summarised in the follow-
ing porposition.

Proposition 8. Suppose N ⊂ M be a unital inclusion of finite dimensional
C⋆ algebras. Let tr be a faithful, unital, positive trace on M . Then,

1. The C⋆ algebra generated by M and eN in B(L2(M, tr)) is πr(N)
′

.

2. The central support of eN in πr(N)
′

is 1.

3. eNxeN = E(x)eN for x ∈ M .

4. If Λ is the inclusion matrix for N ⊂ M then Λt is the inclusion matrix
for M ⊂ πr(N)

′

.

Proof. Let 〈M, eN 〉 denote the C⋆ algebra generated by M and eN . We
prove that the commutant of 〈M, eN 〉 is πr(N). Let T ∈ (〈M, eN 〉)′ . Since
T commutes with eN , T leaves N invariant. Let x = T (1). Then x ∈ N .
Now T (y) = Tπl(y)(1) = πl(y)T (1) = yx = πr(x)(y). Hence T ∈ πr(N).
This implies 〈M, eN 〉′ ⊂ πr(N) On the other hand, πr(N) commutes with
M . Since N is invariant under πr(N), it follows that πr(N) commutes with
eN . Hence πr(N) commutes with 〈M, eN 〉. This implies (〈M, eN 〉)′ = πr(N).
By von Neumann’s double commutant theorem, (〈M, eN 〉) = πr(N)

′

.

Let q1, q2, · · · , qr denote the minimal central projections in N . Then the
minimal central projections of (πr(N))

′

are πr(q1), πr(q2), · · · , πr(qr). Since
πr(qi)eN (q⋆

i ) = q⋆
i qi, we have πr(qi)eN 6= 0. Thus the central support of eN

in 〈M, eN 〉 is 1.

Let x ∈ M be given. On N⊥, eNxeN = 0 = E(x)eN . Let n ∈ N be given.
Then eNxeN (n) = E(xn) = E(x)n = E(x)eN (n). Hence eNxeN = E(x)eN .

For a C⋆ algebra A, Let Aop denote the C⋆ algebra whose underlyind set and
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the invloution are that of A but the multiplication is changed to x.y = yx.
Now the center of Aop is same as the center of A. Hence the minimal central
projections of Aop are the same as that of A. Now πr : Mop → B(L2(M, tr))
is a unital inclusion. Now the inclusion matrix of Nop ⊂ Mop is the same as
that of N ⊂ M since the minimal central projections of Nop and Mop are the
same as that of N and M . Now by Lemma 5, it follows that the inclusion
matrix for M = (πr(M))

′ ⊂ (πr(N))
′

) = 〈M, eN 〉 is Λt. This completes the
proof. �

Definition 8. Suppose N ⊂ M is a unital inclusion of finite dimensional
C⋆ algebras. Let tr : M → C be a faithful, unital, positive trace on M . Let
M ⊂ 〈M, eN 〉 be the basic construction associated to the pair (N ⊂ M, tr).
Then tr is called a Markov trace of modulus τ if there exists a positive
trace Tr : 〈M, eN 〉 → C such that

1. Tr(xeN ) = τtr(x) for x ∈ M .

2. Tr(x) = tr(x) for x ∈ M .

Proposition 9. Let N ⊂ M be a unital inclusion of finite dimensional C⋆

algebras with a faithful positive trace tr. Suppose that tr is a Markov trace of
modulus τ .Then there exists a unique positive trace Tr on 〈M, eN 〉 satisfying
(1) and (2) of definition 8.

Proof. By definition, there exists a positive trace Tr on 〈M, eN 〉 such that
(1) and (2) holds. Let Tr1 be another trace for which (1) and (2) holds.
Let x, y ∈ M . Now Tr(xeNy) = Tr(yxeN ) = τtr(yx) = Tr1(yxeN ) =
Tr1(xeNy). Consider the set I = {∑n

i=1 xieNyi : xi, yi ∈ M , n ∈ N}. Then
proposition 8 implies that I is an ideal in 〈M, eN 〉 which contains eN . Since
the central support of eN is 1, it follows that I = 〈M, eN 〉. The preceeding
calculations show that Tr1 = Tr on I. Hence Tr = Tr1. �

The following proposition determines when a trace for the pair N ⊂ M
is a Markov trace of modulus τ . Before that we need the following Lemma.

Lemma 7. Let N ⊂ M be a unital inclusion of finite dimensional C⋆ al-
gebras with a faithful, unital, positive trace tr. Suppose q1, q2, · · · , qr are
the minimal central projections in N . Then πr(q1), πr(q2), · · · , πr(qr) are
the minimal central projections in 〈M, eN 〉. If f is a minimal projection in
qiNqi then feN is minimal in πr(qi)〈M, eN 〉.

Proof. Since N commutes with eN , the map x → xeN from N → 〈M, eN 〉
is a homomorphism. We assert that this map is 1-1 and it’s range is
eN 〈M, eN 〉eN . Suppose that xeN = 0 for some x ∈ N . Then πl(x)eN (1) = 0.
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Hence x = 0. Hence x → xeN is 1-1. Let T ∈ eN 〈M, eN 〉eN be given. Since
T commutes with eN , T leaves N invariant. Let x = T (1). Then x ∈ N .
Since T (1 − eN ) = 0 it follows that T = 0 on N⊥. Hence T = xeN on N⊥.
Since T is right N linear, it follows that for n ∈ N , T (n) = T (1)n. Hence
T (n) = xeN (n) for n ∈ N . Hence T = xeN on N . Hence T = xeN . It is clear
that the map x → xeN has range in eN 〈M, eN 〉eN . This proves the assertion.

Let f be a minimal projection in qiNqi. Note that πr(qi)eN = πl(qi)eN . Note
that feNπr(qi) = fqieN = feN . Hence feN ≤ πr(qi). Let p be a nonzero
projection in 〈M, eN 〉 such that p ≤ feN . Now p = feNpfeN = eNfpfeN .
Hence p = xeN for some x ∈ N . By the 1-1 ness of the map x → xeN , it
follows that x is a nonzero projection. Now xeN = xeNfeN = xfeN . Thus
x = xf . Similarly x = fx. Hence by the minimality of f , it follows that
x = f and hence p = feN . Therefore feN is minimal. This completes the
proof. �

Proposition 10. Suppose N ⊂ M be a unital inclusion of finite dimen-
sional C⋆ algebras with a faithful, unital, positive trace tr. Let Λ be the
inclusion matrix for N ⊂ M . Let ~µ and ~ν be the dimension vectors for
M and N respectively. Suppose ~r and ~s are the trace vectors for tr |N and
tr |M respectively. Then tr is a Markov trace of modulus τ if and only if
ΛtΛ~s = 1

τ
~s and ΛΛt~r = 1

τ
~r.

Proof. Let tr be Markov of modulus τ and Let Tr be the corresponding
trace on 〈M, eN 〉. Let ~t be the trace vector for Tr on 〈M, eN 〉. By lemma 7,
we have ~t = τ~r. Since the traces are consistent, we have ~r = Λ~s = ΛΛt(~t) =
ΛΛt(τ~r) = τΛΛt(~r). Also, ~s = Λt(~t) = Λt(τ~r) = τΛtΛ(~s).

Suppose the inclusion matrix satisfies the condition in the proposition. De-
fine Tr on 〈M, eN 〉 by letting it’s trace vector be ~t = τ~r. Then Λt(~t) =
τΛt(~r) = τΛtΛ~s = ~s. Hence Tr(x) = tr(x) for x ∈ M . Also by defi-
nition of Tr, it follows that Tr(peN ) = τtr(p) for every minimal projec-
tion p in N and hence Tr(xeN ) = τtr(x) for x ∈ N . Let x ∈ M . Now
Tr(xeN ) = Tr(eNxeN ) = Tr(E(x)eN ) = τtr(E(x)) = τtr(x). This proves
that tr is a Markov trace of modulus τ . �

Corollary 1. Let N ⊂ M be a unital inclusion of finite dimensional C⋆ al-
gebras with a faithful, unital, positive trace tr. Suppose that tr is a Markov
trace of modulus τ . Then the unique trace Tr on 〈M, eN 〉which extends tr
and for which Tr(xeN ) = τtr(x) is a Markov trace of modulus τ for the pair
M ⊂ 〈M, eN 〉.

Proof. Let ~r,~s,~t be as in proposition 10. Let Λ be the inclusion matrix for
the pair N ⊂ M . Then ~t = τ~r. Now ΛΛt~t = τΛΛt~r = τ 1

τ
(~r) = 1

τ
(~t). Hence
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by proposition 10, it follows that Tr is a Markov trace of modulus τ . �

We end this section with a lemma which characterises the basic construction
for a pair N ⊂ M whose proof can be found in [JS].

Lemma 8. Let A ⊂ B be a unital inclusion of finite dimensional C⋆ algebras
with a faithful, unital, positive trace tr. Let E be the unique trace preserving
conditional expectation of B onto A. Let B1 = 〈B, e〉 denote the result of
the basic construction. Let B ⊂ C be a unital inclusion of finite dimensional
C⋆ algebras. Suppose C contains a projection f satisfying

(1) C = 〈B, f〉;

(2) fbf = E(b)f for b ∈ B; and

(3) f commutes with A and a → af is an injective ∗ homomorphism of A
into C.

(4) The central support of f in C is 1.

Then there exists a unique isomorphism Ψ : B1 → C such that Ψ(b) = b for
b ∈ B and Ψ(e) = f .

3.3 Jones Tower

Let N ⊂ M be a unital inclusion of finite dimensional C⋆ algebras with a
faithful, unital, positive trace tr. Suppose that tr is Markov of modulus τ .
Then there exists a unique faithful, positive trace which extends tr which
we continue to denote by tr such that tr(xeN ) = τtr(x) for x ∈ M . Then
tr is a Markov trace of modulus τ for the pair M ⊂ 〈M, eN 〉. Let e1 = eN .

Iterating the basic construction for the pair M ⊂ 〈M, e1〉, we get a tower
of finite dimensional C⋆ algebras N ⊂ M ⊂ 〈M, e1〉 ⊂ 〈M, e1, e2〉 ⊂ · · ·
with faithful, unital, positive trace on

⋃

n〈M, e1, e2, · · · , en〉 which we again
denote by tr. This tower is called the Jones tower. Let M0 = N , M1 = M
and Mn = 〈M, e1, e2, · · · , en−1〉. Mn+1 is obtained by the basic construction
for the pair (Mn−1 ⊂ Mn, tr). Let En−1 : Mn → Mn−1 be the corresponding
conditional expectation. Then we have the following,

(1) tr(x) = tr(En−1(x)) if x ∈ Mn.

(2) tr(xen) = τtr(x) if x ∈ Mn.

(3) en commutes with Mn−1.

(4) enxen = En−1(x)en if x ∈ Mn.
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Now tr(En(en)x) = tr(En(enx)) = tr(enx) = τtr(x) = tr(τx) for x ∈ Mn.
Since tr is faithful, En(en) = τ .

The next proposition says that the sequence of projections en satisfy the
TL relations.

Proposition 11. Suppose N ⊂ M is a unital inclusion of finite dimensional
C⋆ algebras and Let tr be a Markov trace of modulus τ . If {en} denote the
sequence of projections in the Jones tower, then

e2
i = ei = e⋆

i ∀ i ∈ N

eiej = ejei if |i − j| ≥ 2

eiejei = τei if |i − j| = 1

Proof. Only the third relation requires proof. Let n ∈ N be given. Now
en+1enen+1 = En(en)en+1 = τen+1. Consider the previous relation in Mn+2.
Then, en+1en√

τ
is a partial isometry.

Hence ( en+1en√
τ

)⋆ en+1en√
τ

= enen+1en

τ
is a projection. Clearly enen+1en

τ
≤ en.

Now tr( enen+1en

τ
) = tr(en). Since tr is faithful, it follows that enen+1en

τ
= en.

This completes the proof. �

3.4 Jones quotient

We will describe a C⋆ quotient for TL(τ) called the Jones quotient for every
τ ∈ (0, 1

4 ] ∪ {1
4sec2( π

m+1 : m ≥ 2}.

First we show that for τ ∈ {1
4sec2( π

m+1 : m ≥ 2} there exists an inclu-
sion N ⊂ M of finite dimensional C⋆ algebras which admits a Markov trace
of modulus τ . We need the following proposition for that. We say that
the inclusion N ⊂ M is connected if the Bratelli diagram for the inclusion
N ⊂ M is connected.

Proposition 12. Let N ⊂ M be a unital inclusion which is connected. Then
there exists a unique Markov trace of modulus τ if and only if τ =‖ Λ ‖−2.

For a proof we refer to [GHJ] �

Let τ = 1
4sec2 π

n+1 . It is enough to exhibit a Bratelli diagram or a bipartite

graph whose corresponding matrix Λ satisfies ||Λ|| = 1√
τ
. First suppose

that n is even, say n = 2l. Note that the norm of a matrix won’t change
by changing rows and columns. Consider the following bipartite graph with
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2l = l + l vertices.

Let Λ be the corresponding matrix. Let Y =

(

0 Λ
Λt 0

)

. Then Y is the

adjacency matrix of the following path with 2l vertices.

Then

Y =



















0 1 0 . 0 0
1 0 1 . 0 0
0 1 0 . 0 0
...

...
...

...
...

...
0 0 0 . 0 1
0 0 0 . 1 0



















For j = 1, 2, · · ·n, one checks that Y ξj = λjξj where λj = 2cos( jπ
n+1) ,

ξj =
(

sin( jkπ
n+1)

)

1≤k≤l
. Since Y is symmetric, it follows that ||Y || = 2cos( π

n+1).

Now note that Y Y t =

[

ΛΛt 0
0 ΛtΛ

]

. Hence ||Y ||2 = ||Y Y t|| = ||Λ||2.

Hence ||Λ||2 = 1
τ
.

When n is odd say n = 2l + 1 , considering the following bipartite graph
with 2l + 1 = l + (l + 1) vertices and arguing as above will do the job.

We now define the Jones quotient Jn(τ) for τ ∈ {1
4sec2( π

m+1 : m ≥ 2}.
Suppose τ ∈ {1

4sec2( π
m+1 : m ≥ 2}. Let N ⊂ M be an inclusion of finite

dimensional C⋆ algebras which admits a Markov trace of modulus τ . Let
M0 ⊂ M1 ⊂ M2 ⊂ · · · be the Jones tower. Let Jn(τ) ⊂ Mn be the C⋆

algebra generated by 1, e1, e2, · · · , en−1. We set Ji(τ) = C for i = 0, 1. Then
En−1(Jn(τ)) ⊂ Jn−1(τ). Then we have a tower Jn(τ) ⊂ Jn+1(τ) of finite di-
mensional C⋆ algebras and a faithful unital positive trace on

⋃

n Jn(τ). We
refer to [Jon] for the Bratelli diagram of the tower Jn(τ) ⊂ Jn+1(τ). From
the Bratelli diagram it follows that the tower Jn(τ) ⊂ Jn+1(τ) together with
the conditional expectations En−1 and the trace depends only on τ and is
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independent of the initial inclusion N ⊂ M .

Let τ < 1
4 . It is shown in [Jon] that, in this case, there exists a unital

inclusion of type II1 factors with index τ−1, and that here too, just as in
the finite dimensional case, one may, by iterated basic construction, obtain
the Jones’ tower N ⊂ M ⊂ 〈M, e1〉 ⊂ 〈M, e1, e2〉 of type II1 factors and
conditional expectations En : Mn+1 → Mn where M0 = N ,M1 = M and
Mn = 〈M, e1, e2, · · · en−1〉. The tower Mn ⊂ Mn+1 has a faithful positive
trace tr on

⋃

n Mn.

Then we have the following,

(1) tr(x) = tr(En−1(x)) if x ∈ Mn.

(2) tr(xen) = τtr(x) if x ∈ Mn.

(3) en commutes with Mn−1.

(4) enxen = En−1(x)en if x ∈ Mn.

Also the e′ns satisfy the TL relations. Now Jn(τ) is defined as in the finite di-
mensional case. As in the finite dimensional case, the tower Jn(τ) ⊂ Jn+1(τ)
together with the conditional expectations En : Jn+1(τ) → Jn(τ) and the
trace depends only on τ and is independent of the initial inclusion N ⊂ M .
We refer to [JS] for the definition of type II1 factors and the basic construc-
tion for type II1 factors.

From now on, Let eT
1 , eT

2 , · · · eT
n−1 denote the idempotents in Tn(τ) and

eJ
1 , eJ

2 , · · · eJ
n−1 denote the ’Jones’ projections in Jn(τ). Suppose ǫT

n and
ǫJ
n denote the corresponding conditional expectation and let Ti(τ) = C for

i = 0, 1. By the universal property of Tn(τ) there exists a unique map
φn : Tn(τ) → Jn(τ) such that φn is unital and φn(eT

i ) = eJ
i . Note that

φn+1(a) = φn(a) if a ∈ Tn(τ). Hence we can and will denote the maps φn

by φ. The algebra Jn(τ) is called the Jones quotient of Tn(τ)

Note the following properties of φ:

(1) The map φ is ∗ preserving.

(2) φ(ǫT
n (a)) = ǫJ

n(φ(a)) if a ∈ Tn+1(τ).

(3) φ(trT (a)) = trJ(φ(a)) if a ∈ Tn(τ).

(1),(2) and (3) can be proved by induction on n and by noting the fact that
{x +

∑r
i=1 xie

T
nyi : x, xi, yi ∈ Tn(τ) and r ∈ N} = Tn+1(τ).
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Recall the polynomials Pk(λ) and the Jones Wenzl projections fT
k defined

in chapter 2. Let fJ
k = φ(fT

K).

Proposition 13. If Pk(τ) 6= 0 for k = 1, 2, · · · , n−1 then fJ
k = 1−∨k−1

i=1 ei

for 2 ≤ k ≤ n.

Proof. Let k ≥ 2. Since fJ
k eJ

i = 0 for i ∈ {1, 2, · · · , k − 1}, it follows that
1 − fJ

k ≥ eJ
1 ∨ eJ

2 ∨ · · · ∨ eJ
k−1. But 1 − fJ

k is in the algebra generated by

e1, e2, · · · ek−1. Thus 1 − fJ
k ≤ eJ

1 ∨ eJ
2 ∨ · · · ∨ eJ

k−1.

Hence 1 − fJ
k = eJ

1 ∨ eJ
1 ∨ · · · ∨ eJ

k−1. This completes the proof. �

We refer to [Jon] for the following proposition.

Proposition 14. If Pk(τ) 6= 0 for k = 1, 2, · · ·n − 1 then dim Jk(τ) =
1

k+1

(

2k
k

)

for k = 1, 2, · · · , n− 1. Hence φ : Tk(τ) → Jk(τ) is an isomorphism
for k = 1, 2, · · · , n − 1.

Hence if τ ≤ 1
4 , any C⋆ representation of Tk(τ) is a C⋆ representation of

Jk(τ). In the next chapter, we will prove that if τ = 1
4sec2( π

n+1), any C⋆

representation π for which π(eT
1 ) ∨ π(eT

2 ) · · · ∨ π(eT
k−1) = 1 factors through

Jk(τ) when k ≥ n.

Let us recall the Murray von Neumann equivalence. Let M be a finite
dimensional C⋆ algebra. Let p, q be projections in M . We say p is Murray
von Neumann equivalent to q if there exists w ∈ M such that w⋆w = p and
ww⋆ = q. Note that in Jn(τ) all the e

′

is are Murray von Neumann equivalent.

Let τ = 1
4sec2( π

n+1) where n ≥ 2. Then Pk(τ) 6= 0 for k = 1, 2, · · ·n − 1 but

Pn(τ) = 0. Note that trJ(fJ
n ) = Pn(τ) = 0. Since tr is faithful, fJ

n = 0.
Hence eJ

1 ∨ eJ
2 ∨ · · · ∨ eJ

k−1 = 1 in Jk(τ) for k ≥ n. We will prove in the next
chapter that the kernel of the map φ : Tk(τ) → Jk(τ) is the ideal generated
by fT

n in Tk(τ) for k ≥ n. We need the following proposition for that.

Proposition 15. Let τ = 1
4sec2( π

n+1) for some n ≥ 2. Then Jk+1(τ)

together with eJ
k is the basic construction of the pair (Jk−1(τ) ⊂ Jk(τ), tr)

for k ≥ n−1. That is, if 〈Jk(τ), e〉 denotes the basic construction then there
exists a unique isomorphism Ψ : 〈Jk(τ), e〉 → Jk+1(τ) such that Ψ(a) = a if
a ∈ Jk(τ) and Ψ(e) = eJ

k .

Proof. Let k ≥ n − 1 be given. We apply Lemma 8 with f = eJ
k to prove

this. ǫJ
k−1 is the unique trace preserving conditional expectation of Jk(τ)
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onto Jk−1(τ). Clearly (1), (2) of lemma 8 are true. Also, eJ
k commutes with

Jk−1(τ). Now let xeJ
k = 0 for some x ∈ Jk−1(τ). Then yxeJ

k = 0 for ev-
ery y ∈ Jk−1(τ). Hence for y ∈ Jk−1(τ), τtr(yx) = tr(yxeJ

k ) = 0. Hence
tr(yx) = 0 for every y ∈ Jk−1(τ). Since tr is faithful, it follows that x = 0.
Hence (3) of lemma 8 is satisfied.

Let p be a central projection in Jk+1(τ) such that p ≥ eJ
k . Let i ∈ {1, 2, · · · , k}

be given. Let w ∈ Jk+1(τ) be such that w∗w = eJ
k and ww∗ = eJ

i . Now
eJ
i p = ww∗p = wpw∗ = weJ

kpw∗ = weJ
kw∗ = ww⋆ = eJ

i . Hence p ≥ eJ
i for

every i ∈ {1, 2, · · · , k}. Hence p ≥ eJ
1 ∨ eJ

2 ∨ · · · ∨ eJ
k ≥ 1 − fJ

n = 1 by the
observation preceeding this proposition. Hence (4) of lemma 8 is satisfied.
The proof is complete by applying lemma 8. �
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Chapter 4

Maximal C⋆ quotient of Tn(τ )

4.1 Maximal C⋆ qoutient of a ⋆ algebra

Let A be a unital C algebra. For a ∈ A, it’s spectrum, denoted σA(a) is
defined by σA(a) = {λ ∈ C : a − λ1 is not invertible in A}. Let B be
a unital finite dimensional C algebra. Let π : A → B be a unital algebra
homomorphism. Then σB(π(a)) ⊂ σA(a) for a ∈ A.

Suppose A is a unital finite dimensional C algebra. For a ∈ A, let πl(a)
be defined by πl(a)(b) = ab. Let End(A) denote the space of C linear endo-
morphisms of A. Then πl : A → End(A) is a unital algebra homomorphism
which is 1-1. Since σEnd(A)(πl(a)) is nonempty, it follows that σA(a) which
contains σEnd(A)(πl(a)) is nonempty. Now we will show that σA(a) is fi-
nite by showing σA(a) is contained in the set of zeros of the characteristic
polynomial of πl(a).

Lemma 9. Let A be a unital finite dimensional C algebra. Let a ∈ A. Then
σA(a) is nonempty and finite.

Proof. We have already shown that σA(a) is nonempty. Now for a polyno-
mial p(x) over C, p(πl(a)) = πl(p(a)). Since πl(a) satisfies it’s characteristic
polynomial, it follows that ∃ a polynomial p(x) over C such that p(a) = 0.
Now we show that λ ∈ σA(a) implies p(λ) = 0. Let λ ∈ C be such that
p(λ) 6= 0. Then p(x) − p(λ) = (x − λ)q(x) for some polynomial q. Now

−p(λ) = p(a)− p(λ) = (a−λ)q(a) = q(a)(a−λ). Hence −q(a)
p(λ) is the inverse

of a− λ. Thus λ /∈ σA(a). Therefore σA(a) is contained in the zero set of p.
As a result we conclude that σA(a) is finite. �

Let A be a finite dimensional unital ⋆ algebra. Let π : A → B be a C⋆

representation where B is a C⋆ algebra. Then for a ∈ A,

||π(a)||2 = ||π(a⋆a)|| ≤ sup{|λ| : λ ∈ σB(π(a⋆a))}
≤ sup{|λ| : λ ∈ σA(a⋆a)} since σB(π(a⋆a)) ⊂ σA(a⋆a) .
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For a ∈ A, define

||a|| := sup{||π(a)|| : π : A → B is a * algebra homomorphism where B is a C⋆ algebra}

Then ||a|| < ∞ ∀a ∈ A. Let I = {a ∈ A : ||a|| = 0}. Then I is an ideal in
A.
For a ∈ A, note that ||a + I|| = ||a|| depends only on a + I. Then A/I be-
comes a C⋆ algebra with the above norm. Let q : A → A/I be the qoutient
map.
A/I has the following universal property:

Let B be a C⋆ algebra and let π : A → B be a ⋆ homomorphism. Then
∃ a unique ⋆ homomorphism π̃ : A/I → B such that π̃ ◦ q = π.

Definition 9. Let A be a unital finite dimensional ⋆ algebra. A C⋆ algebra
B together with a ⋆ algebra homomorphism q : A → B is said to be a maxi-
mal C⋆ quotient of A if it has the following universal property:
Given a ⋆ homomorphism π : A → C where C is a C⋆ algebra, ∃ a unique ⋆
homomorphism π̃ : B → C such that π̃ ◦ q = π.

Note that maximal C⋆ quotient of a unital finite dimensional ⋆ algebra exists
and is unique upto a unique isomorphism.

Let τ ∈ (0, 1
4 ]∪{1

4sec2( π
n+1) : n ≥ 2}. Now if Pk(τ) 6= 0 for k = 1, 2, · · ·n−1

then the natural map φ : Tk(τ) → Jk(τ) is a ⋆ isomorphism. Hence if
Pk(τ) 6= 0 for k = 1, 2, · · · , n− 1 then (Jk(τ), φ) is the maximal C⋆ quotient
of Tk(τ) for k = 1, 2, · · · , n− 1. In particular, if τ ≤ 1

4 then (Jk(τ), φ) is the
maximal C⋆ quotient of Tk(τ) ∀ k ≥ 1.

Let τ = 1
4sec2( π

n+1) where n ≥ 2. Let 1̃ : Tk(τ) → C be the ∗ homo-

morphism defined by 1̃(eT
i ) = 0 for i ≤ k − 1 and 1̃(1) = 1 (which exists by

the universal property of Tk(τ)). We will prove that (Jk(τ)⊕C, φ⊕ 1̃) is the
maximal C⋆ quotient of Tk(τ) when k ≥ n. This requires the determination
of the kernel of the map φ : Tk(τ) → Jk(τ) when k ≥ n. We need the
following lemma for that.

Lemma 10. Let N ⊂ M be a unital inclusion of finite dimensional C⋆ alge-
bras with a faithful, unital, positive trace tr. Then M is a N −N bimodule.
Let 〈M, eN 〉 denote the basic construction. Then the M − M bimodule ho-
momorphism Ψ : M ⊗N M → 〈M, eN 〉 defined by Ψ(x ⊗ y) = xeNy is an
isomorphism.

Proof. The map Ψ is well defined since eN commutes with N . Consider
M as a right N module. Then 〈M, eN 〉 is just the space of right N linear
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maps of M . Let E : M → N be the unique trace preserving conditional
expectation. Let M∗ dente the space of right N linear maps from M to N .
Then M∗ is a left N module. For b ∈ M , define Eb(x) = E(bx) for x ∈ M .
Then Eb ∈ M∗. Define θ : M → M∗ by θ(b) = Eb. Clearly θ is left N linear.

Assertion: θ is an isomorphism.

Suppose θ(b) = 0 for some b ∈ M . Then tr(bx) = tr(E(bx)) = tr(Eb(x)) =
0 ∀x ∈ M. Since tr is faithful,we have b = 0. Hence θ is one one. Now let σ ∈
M∗ be given. Then tr ◦ σ is a linear functional on M . Since M is a Hilbert
space, ∃ b ∈ M such that tr ◦ σ = 〈 , b⋆〉. Hence tr(σ(x)) = tr(bx) ∀x ∈ M .
Hence tr(σ(x)n) = tr(σ(xn)) = tr(bxn) = tr(E(bxn)) = tr(E(bx)n) for
x ∈ M, n ∈ N . Since tr is faithful on N , σ(x) = E(bx) ∀x ∈ M . Hence
σ = θ(b). Therefore, θ is onto. This proves the assertion.

Since C⋆ algebras are semisimple, M as a right N module is semisimple.
M is also finitely generated as an N module. Hence M is finitely genrerated
projective and hence flat. Hence id ⊗ θ : M ⊗N M → M ⊗N M∗ is an iso-
morphism. Since M is finitely generated and projective, the canonical map
χ : M ⊗N M⋆ → EndN (M) given by χ(x ⊗ y⋆)(m) = xy⋆(m) is one one.
Hence χ ◦ id ⊗ θ is one one.

Assertion: Ψ = χ ◦ (id ⊗ θ). Let x, y, m ∈ M be given. Now

(χ ◦ (id ⊗ θ))(x ⊗ y)(m) = xθ(y)(m) = xE(ym) = xeNy(m).

Hence χ ◦ (id ⊗ θ) = Ψ. This proves the assertion. Hence Ψ is one one.

The image of Ψ is clearly an ideal which contains eN . Since the central
support of eN in 〈M, eN 〉 is 1, it follows that Ψ is onto. Hence Ψ is an
isomorphism. �

Now We compute the kernel of the map φ : Tk(τ) → Jk(τ) for k ≥ n
when τ = 1

4sec2( π
n+1) where n ≥ 2. The proof of the following proposition

can be found in [JR]. We include the proof for completeness.

Proposition 16. Let τ = 1
4sec2( π

n+1) where n ≥ 2. Then the kernel of the

natural map φ : Tk(τ) → Jk(τ) for k ≥ n is the ideal generated by fT
n in

Tk(τ) for k ≥ n.

Proof. By induction, 1̃(fT
k ) = 1 for 0 ≤ k ≤ n. Hence fT

n 6= 0. We will write
Tk for Tk(τ).

Let Ak = Tk for 0 ≤ k ≤ n − 1. Let Ak = Ak−1e
T
k−1Ak−1 for k ≥ n.

Then Ak ⊂ Tk.
Assertion: For every k ≥ 0,
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(1) Ak is a subalgebra of Tk.

(2) ǫT
k−1(Ak) ⊂ Ak−1.

(3) Ak is a Ak−1 − Ak−1 bimodule.

We prove this by induction on k. Clearly (1), (2) and (3) holds for k ≤
n − 1. Now assume (1), (2) and (3) holds for k. Let x, y, z, w ∈ Ak. Now
(xeky)(zekw) = xǫT

k−1(yz)ekw. Now (1), (2), (3) for Ak implies xǫT
k−1(yz) ∈

Ak. Hence (xeT
k y)(zeT

k w) ∈ Ak+1. Hence Ak+1 is a subalgebra of Tk+1. Let
x, y ∈ Ak. Then ǫT

k (xeky) = τxy ∈ Ak since Ak is a subalgebra of Tk. Hence
ǫT
k (Ak+1) ⊂ Ak. Since Ak is a subalgebra of Tk, it follows that Ak+1 is a

Ak − Ak bimodule. This proves the assertion.

Assertion : The map φ : Ak → Jk is an isomorphism.

We prove the assertion by induction on k. The map φ : Ak → Jk is an
isomorphism for k ≤ n − 1 is exactly proposition14. Now assume that φ
is an isomorphism for 0 ≤ l ≤ k. Let φ ⊗ φ denote the isomorphism from
Ak ⊗Ak−1

Ak to Jk ⊗Jk−1
Jk when one identifies Al with Jl when l ≤ k via φ.

Let χ : Ak ⊗Ak−1
Ak → Ak+1 be defined by χ(x ⊗ y) = xeT

k y. Let Ψ be the
map of Lemma 10 where N = Jk−1, M = Jk and the projection eN = eT

k .
Now Ψ ◦ φ ⊗ φ = φ ◦ χ. By induction hypothesis, φ ⊗ φ is an isomorphism.
Since Ψ is also an isomorphim, it follows that φ ◦ χ is an isomorphism. By
definition, χ is onto. Hence φ is one-one. Since φ ◦ χ is onto, φ is onto.
Hence φ : Ak+1 → Jk+1 is an isomorphism. This proves the assertion.

For k ≥ n, Let Ik denote the ideal in Tk(τ) generated by fT
n . Clearly

Ik ⊂ Ik+1. Observe that Tke
T
k Tk is an ideal in Tk+1 which contains eT

k .
Since eT

k−1 = 1
τ
(eT

k−1e
T
k eT

k−1) it follows that Tke
T
k Tk contains eT

k−1. Similarly

it contains eT
1 , eT

2 , · · · , eT
k−2. Hence 1 − fT

n ∈ Tke
T
k Tk for k ≥ n − 1. Hence

Ik+1 + Tke
T
k Tk = Tk+1 for k ≥ n− 1. We claim that Ik + Ak = Tk for k ≥ n.

We prove this by induction on k. We have just proved that the claim is true
for k = n. Now assume the claim is true for k. Since Tk+1 = Ik+1 +Tke

T
k Tk,

it is enough to show that if x, y ∈ Tk then xeT
k y ∈ Ik+1+Ak+1. By induction

hypotheis, ∃z, w ∈ Ik and u, v ∈ Ak such that x = z + u and y = w + v.
Now xeT

k y = zeT
k w + ueT

k w + zeT
k v + ueT

k v. Since Ik ⊂ Ik+1 , it follows
that zeT

k w + ueT
k w + zeT

k v ∈ Ik+1. By definition ueT
k v ∈ Ak+1. Hence

Ik+1 + Ak+1 = Tk+1. Thus completes the induction and proves the claim.

Now we prove that the kernel of the map φ is Ik for k ≥ n. Let k ≥ n
be given. Since fJ

n = 0, it follows that Ik ⊂ ker(φ). Now let x ∈ Ker(φ)
be given. Let z ∈ Ik and w ∈ Ak be such that x = z + w. Then 0 = φ(w).
Since φ : Ak → Tk is an isomorphism, it follows that w = 0. Hence x ∈ Ik.
Thus ker(φ) ⊂ Ik. Therefore ker(φ) = Ik. This completes the proof. �
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Now We prove the much promised fact that when τ = 1
4sec2( π

n+1) where

n ≥ 2 , (Jk(τ)⊕C, φ⊕ 1̃) is the maximal C⋆ quotient of Tk(τ) when k ≥ n.
We begin with the following theorem.

Theorem 2. Let τ = 1
4sec2( π

n+1) where n ≥ 2. Let k ≥ n. Let A be a
C⋆ algebra. Let π : Tk(τ) → A be a ⋆ algebra homomorphism such that
∨k−1

i=1 π(ei) = 1. Then ∃ a unique ⋆ algebra homomorphism π̃ : Jk(τ) →
Tk(τ) such that π̃ ◦ φ = π.

Proof. It is enough to show that π = 0 on ker(φ). Since ker(φ) is the ideal
generated by fT

n , it is enough to show that π(fT
n ) = 0.

Assertion: π(fT
n )π(eT

i ) = 0 for 1 ≤ i ≤ k − 1.

Note that fT
n eT

i = 0 for 1 ≤ i ≤ n − 1. Hence if k = n then we are
done. Hence assume k > n. Now

eT
nfT

n eT
n = eT

nfT
n−1 −

Pn−2(τ)

Pn−1(τ)
fT

n−1e
T
neT

n−1e
T
nfT

n−1

=
Pn(τ)

Pn−1(τ)
eT
nfT

n−1

= 0

Hence π((eT
nfT

n )(eT
nfT

n )⋆)) = 0. Hence π(eT
nfT

n ) = 0. Hence taking adjoints
π(fT

n eT
n ) = 0. Now let i be such that n < i ≤ k. Let wi = eT

i eT
i−1 · · · eT

n+1.
Then wie

T
nw⋆

i = τn−ieT
i . But wi commutes with Tn. Hence we have

π(fT
n eT

i ) = 1
τn−i π(wi)π(fT

n eT
n )π(w⋆

i ) = 0. This proves the assertion.

Since
∨k−1

i=1 π(eT
i ) = 1, it follows that π(fT

n ) = 0 which completes the proof.
�

Theorem 3. Let τ = 1
4sec2( π

n+1) where n ≥ 2. Let k ≥ n. Then the maxi-

mal C⋆ quotient of Tk(τ) is (Jk(τ) ⊕ C, φ ⊕ 1̃).

Proof. We will show that (Jk(τ)⊕C, φ⊕ 1̃) satisfies the universal property of
the maximal C⋆ quotient. Suppose A be a C⋆ algebra and Let π : Tk(τ) → A
be a ⋆ algebra homomorphism. By considering the image of π, if necessary,
we can assume that π is onto. Then π is unital. Let p =

∨k−1
i=1 π(eT

i ).
Then p is a central projection in A. Let π1 : Tk(τ) → pA be defined by
π1(a) = pπ(a). Then

∨k−1
i=1 π1(e

T
i ) = 1. Hence by Theorem 2, ∃ a map

π̃1 : Tk(τ) → pA such that π̃1 ◦ φ = π1. Now define π̃ : Jk(τ) ⊕ C → A by
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π̃(a, λ) = π̃1(a) + λ(1 − p). Since 1 together with nonempty reduced words
form a basis for Tk(τ), it follows that π(a)(1 − p) = 1̃(a)(1 − p). Hence
π̃ ◦ (φ ⊕ 1̃) = π. That such a map is unique follows from the ontoness of
φ ⊕ 1̃. This completes the proof. �
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